
Journal of Statistical Physics, Vol. 39, Nos. 1/2, 1985 

Molecular Dynamical Simulation of 
the Canonical Ensemble 

Ernesto  B o n o m i  1 

Received November 28, 1984; revised June 11, 1984, December 13, 1984 

We apply a technique to simulate the canonical ensemble, mixing molecular 
dynamics and Monte Carlo techniques, in which particles suffer virtual hard 
shocks. In the limit of infinite time the system approaches a Boltzmann dis- 
tribution. A good approximation to the Boltzmann distribution is achieved in 
computationally accessible time for some model systems including the one- 
dimensional jellium. 
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1. I N T R O D U C T I O N  

Statistical mechanics deals with complex systems in equilibrium with the 
surrounding environment including the many interacting particles of which 
matter is built. 

To surmont the difficulties of this problem, the computer simulation 
has become an important experimental tool. 

Frequently, simulations use adaptations of the Metropolis 
algorithm.(1) 

This procedure simulates the evolution of a system in contact with a 
heat bath at temperature T as it is observed at random times (canonical 
ensemble), generating a Markovian process which leads to a unique 
stationary probability density proportional to the Boltzmann weight: 

p(x) ~exp[  -fig(x)] (1) 

1 
/~ = K--~ (2) 
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H(x) is the energy associated to the internal configuration x and K the 
Boltzmann constant. 

A second method commonly used is molecular dynamics. (2'3) 
This procedure consists of solving numerically the equations of motion 

for a dynamical evolution which conserves the total energy E. 
(microcanonical dynamics). In this way, the system explores the set of 
admissible configurations x under the constraint H(x)= E and, according 
to the ergodic theorem, direct measurements allow the evaluation of the 
expectation value of any dynamical observable. 

For instance, the temperature T, which does not appear in this 
method as a control parameter, is determined through the equipartition 
theorem by measuring the average kinetic energy. 

If the number of particles were macroscopically large, it would be 
expected that the molecular chaos generated by the microcanonical 
dynamics describe at statistical equilibrium, the same physical reality as the 
canonical ensemble. 

Unfortunately, at low energy, trapping of the phase-space trajectory 
can occur especially if the number of particles is not very large, as is often 
the case. 

The idea is consequently to "reshuffle" the system, i.e., to introduce 
from time to time or in a continuous way random forces which in a certain 
sense play the role of the very large number of particles which should be 
introduced in the dynamics. A first alternative molecular dynamics, or 
Brownian dynamics (4,s) consists in taking explicitly into account friction 
and a random Gaussian force, which together represent the surrounding 
environment. 

Standard arguments concerning the Markovian nature of the process 
relate the Langevin equations of motion governing Brownian dynamics 
and the Fokker-Planck equation, whose stationary solution is 
precisely (1). 

The temperature T is unambiguously defined by a fluctuation-dis- 
sipation relation involving the damping constant and the diffusion con- 
stant. 

However, in place of the continuous action of friction, we might prefer 
a discrete process in which particles are subject to only a random force. It 
seems worthwhile to combine the pure dynamic evolution where interesting 
collective motion can take place, with a discretized "reshuffling" whose 
main purpose is to untrap the phase-space trajectory. Such a procedure has 
been proposed by Hans C. Anderson. (61 The present paper uses a similar 
technique (developed unaware of Ref. 6). It concretizes this idea simulating 
the canonical ensemble by a molecular dynamics in which, from time to 
time, particles suffer hard shocks with "virtual particles" that can be called 
the heat bath. 
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In our method, time intervals are taken proportional to the 
Boltzmann weight (1), in which one substitutes for the temperature K T  a 
new parameter 0 (when 0 ~ oe time intervals become constant). At the end 
of each interval, the molecular dynamics is stopped and re-initiated by 
replacing the velocity components of a given number of particles, by ran- 
dom numbers, distributed according to the normal law at temperature o. 
Notice that neither 0 nor cr are the equilibrium temperature of the system 
that we want to simulate. In fact, the temperature T is related to 0 and o, 
(KT) l = ~  1+0-1 ,  and it appears as the control parameter of the 
simulation. 

This shuffling procedure operates in such a way as to avoid the con- 
tinuous action of any friction, allowing the system to reach a statistical 
equilibrium, whose probability density is a good estimate of 1 ), in the limit 
of the available running time. 

Let us point out that if the random forces are very frequent, the state 
of the system at two different times will be totally uncorrelated. In this limit 
we deal practically with a pure Monte Carlo method where the different 
states are randomly sampled (practically, we reintroduce a "virtual trajec- 
tory" through a Markof chain). 

Our procedure is more general than the one of Ref. 6 quoted above 
since we introduce, through the external parameters 0 and a, two com- 
petitive processes. The possibility that at low temperature and high density 
the system may be trapped requires the existence of fast particles with 
respect to the thermal velocity; these particles can be generated by taking 
slightly greater then/~-1. The necessity to keep constant the temperature T 
implies also a modification of the time-interval between the artificial 
collisions. Computer experiments show that it is convenient for mixing 
efficiently the phase-space trajectory, to disturb simultaneously more than 
one particle. This operation is, of course, possible in our procedure. It 
allows, for example, to simulate the one-dimensional jellium for a fixed 
value of the coupling constant in reasonable computational time. 

As a final comment, let us mention the recent work of Shfiichi Nos6(7): 
He presents a molecular dynamics method at constant temperature in 
which, by introduction of an additional degree of freedom, the total energy 
of the physical system is allowed to fluctuate. This method is purely 
dynamical. 

2. C A N O N I C A L  E N S E M B L E  S I M U L A T I O N  

We consider a classical system containing N confined identical par- 
ticles of mass rn = 1 inside a box with impermeable sides. 

To simulate the interaction of the system with a heat bath at tern- 
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perature T, we assume that particles suffer hard shocks with virtual par- 
ticles, whose velocities and positions are randomly defined. 

For each interacting particle, the equations of motion are written in 
the following way: 

6H 
i ) i : - - - + A v i ( t  ) ~, 6 ( t - t ~ )  

~qi . . . .  (3) 

where H is the Hamiltonian of the system. We refer to the time t~ as hits. 
At each hit, the particle coordinate is unchanged: 

q~(t~ + O) = q,(t~ - 0) (4) 

but the particle velocity component receives an increment: 

vi(t~ + O) - v,(t~ - O) = Avi(t~) (5) 

Between two hits particles move in a microcanonical way, conserving the 
total energy (Figure 5): 

E~ = H(v 1 ,..., VN, ql ,---, qN) 

i=i  -~- "}- @(ql,'", qx)  (6) 

In this collision process, each component of the new velocity vi(t~ +0)  is 
assumed to be a random Gaussian variable 

vi(t ~ + 0) ~ JV'(0, x/-~) (7) 

and the time interval between two hits till = t ~ + t - t ~ ,  is taken propor- 
tional to the Boltzmann factor: 

The flow induced by the above procedure is expected to converge to a 
statistical steady state, in which configurations of the phase space are 
correctly displayed according to (1). Moreover, the temperature T should 
be connected to the variance cr of the gaussian noise (7) and to the con- 
stant 0 appearing in (8) by the following expression: 

1 1 
/ 3 = ~ + ~  (9) 



Molecular Dynamical Simulation of the Canonical Ensemble 171 

A heuristic proof of these statement is given in the next section. From this 
last expression, we can extract two extreme cases of the thermalization 
process. 

When a tends to infinity, the Gaussian density tends to a uniform den- 
sity over the whole real axis, and /3--1/0. This situation is illustrated in 
Figure 1: for different values of 0, the phase-space trajectory of one particle 
moving in an external field ~b(q) is simulated. The potential 
~b(q) = 7 q 2 ( q 2  1)2, 7 = 27/4, has three minima equal to zero at q = - 1 ,  0, 1 
and the energy gap to pass between then is equal to one. Of course, the 
implementation of this procedure for large ~ gives rise at each hit to the 
delicate numerical calculation of exp(-E~/O) slowing down considerably 
the simulation and leading to possible underflow messages. For  these two 

KT= .5 

q 

I V 

i>., ,/i-.: 

,~ %4/._-.. ~ 

T--- .25 

Fig. 1. Computer simulation of the trajectory in phase space of a particle moving in an 
externed field ~b(q)=Tq2(q 2 -  1) 2 7 = 27/4 and suffering hard shocks with virtual particles: 
O- ~ OO.  
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reasons, to perform the computer simulation we consider only a uniform 
distribution in the interval [ - 4  .,/-0; 4 ~-0] for the possible new velocity. 
Of course, so doing we neglect the very large energies, but in that case the 
time-intervals considered would be extremely short and their contribution 
totally negligible. Consequently, a can be really considered infinite and, 
from (9), O=KT.  

Table I shows for some thermodynamical quantities (mean square 
velocity, average energy, average potential energy, specific heat) the com- 
parison between the exact value derived from the definition of the 
canonical ensemble, and the numerical values obtained as time average by 
simulation: the agreement is remarkable (see also Figure 2). 

These numerical difficulties disappear when, for a fixed value of a, 0 
tends to infinity. In this situation, time intervals become constant and the 
inverse temperature is given by/~ = 1/a. 

To illustrate this case, one dimensional jellium has been investigated. 
In this system we consider a set of N particles of charge - e, immersed in a 
neutralizing background of positive charge with density p = (N + s)/L, con- 
fined in a box [0, L]. s is called the excess of charge. In Ref. 8 it is shown 
that this system, in the canonical ensemble, is in a crystalline state for all 
values of the coupling constant 2-- (2eZ/pKT) 1/2. This is proven by showing 
that the one-particle density function n(q) in the thermodynamic limit is a 

Table I. Comparison between the Canonical Ensemble Average and the 
Simulation Time-Average: ~ ( q )  = 7q~(q 2-1 )z, y = 27/4 

kT @2) (E)cAN (E) (POT)cAN (POT) CCA N C 

0.10 0.099 0.108 0.108 0.058 0.058 0.976 0.980 
0.15 0.149 0.152 0.151 0.077 0.076 0.802 0.795 
0.20 0.199 0.190 0.189 0.090 0.089 0.712 0.706 
0.25 0.249 0.224 0.223 0.099 0.098 0.663 0.656 
0.30 0.300 0.256 0.257 0.106 0.107 0.636 0.636 
0.40 0.398 0.319 0.318 0.119 0.119 0.609 0.605 
0.60 0.597 0.438 0.438 0.138 0.140 0.593 0.587 
0.80 0.795 0.557 0.553 0.157 0.155 0.590 0.582 
1.0 0.994 0.675 0.671 0.175 0.174 0.591 0.591 
1.2 1.190 0.793 0.785 0.193 0.190 0.592 0.581 
1.4 1.400 0.911 0.911 0.212 0.211 0.594 0.595 
1.6 1.594 1.030 1.027 0.230 0.230 0.595 0.597 
1.8 1.792 1.150 1.146 0.250 0.250 0.597 0.596 
2.0 1.985 1.269 1.263 0.269 0.270 0.599 0.603 

( . )  indicates simulation results. 
(")CAN indicates canonical ensemble theoretical results. 
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F i g .  2. T h e  particle moves in the external field ~b(q) = 7q2(q 2 - 1 )2, ~ = 2 7 / 4 ,  a = ~ :  ~ ,  com- 
puter simulation;---exact result. (a) Velocity distribution; (b) spatial density. 
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periodic function of the coordinate q. In Ref. 9 an exact expression for n(q) 
is calculated when the thermodynamic limit is realized by sending only one 
wall to infinity. This expression for n(q) allows, for any value of s, a display 
of the state of the system near the fixed boundary. It  has been shown ~1~ 
that we can identify one-dimensional jellium with a set of identical linear 
oscillators each bound to a fixed center of atraction coupled by hard elastic 
collisions (this point of view is strictly equivalent to the concept of 
crossing). A mierocanonical computer  code of this system is described in 
Ref. 10 and surprisingly, in these simulations no periodic structure appears 
on n(q) for 2 ~- 1. 

It was indicated in this reference that a larger coupling constant 
should consequently be used. This is what has been done in Figure 3a, 
where it is evident that the microcanonical dynamics exhibits a poor 
ergodic behavior owing to the absence of energetic particles (belonging to 
the tail of the velocity Gaussian distribution). It is precisely the action of 
those particles which efficiently mix the phase space. 

tl 

/"-z, 

u 

b 

Fig. 3. Computer simulations of one-dimensional jellium with 16 particles 2 is a coupling 
constant and s = -1 the excess of chargeJ s) Position is plotted horizontally and velocity ver- 
tically. (a) Microcanonical dynamics; (b) microcanonical dynamics, particles suffer virtual 
shocks: 0 = oo, ), = 1. 
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An expensive way to improve the statistics is of course to deal with a 
greater number of particles. On the other hand, using the procedure just 
described above (0 ~ oo, KT= u) in which time intervals between two hits 
are kept constant, the thermalization process is accelerated by the 
introduction of the "artificial" shocks as shown in Fig. 3b: each impinging 
particle is reemited with a new random Gaussian velocity and, globally, 
this shuffing process prevents the trapping of the phase-space trajectory. 
Figure 4 illustrates the comparison between the exact statistical behavior of 
the system in the canonical formalism and the computer simulation: 2 = l 

VELOCITIES 

- -7  

& 

.5' 
0 1 2 3 4 5 6 7 8 9 10 

POSITIONS 

b 

Fig. 4. One-dimensional jellium, 20 particles, 2 = 1, s = 0: ~, Computer simulation;--, exact 
result. (a) Velocity distribution; (b) one-particle density function. 
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and s = 0. The crystalline state predicted in Ref. 8 and the boundary effect 
calculated in Ref. 9 (solid line) are confirmed. Notice that this last 
procedure is nothing else but the generalization of the procedure used in 
Ref. 9 to study the same problem. 

3. THE PHASE PROCESS 

Let x be a point in the F-phase space 

x = (v, q) = (vl ,..., YN, q l  ..... qN)  

Let a canonical trajectory in F be defined by 

x , =  T~x, x e F  (10) 

where Tt represents the group of transformations governing the dynamics. 
Let p , ( x ) d x  be the probability to find, just after the nth hit, the system 
inside a volume element dx located at x e F; then 

p , ( x ) = f r d y p ,  l ( y ) ~ ( x ] y )  (11) 

where ~ ( x l y )  is the probability density to have a transition from 
y -- (~5, ~) to x = (v, q). See Fig. 5. 

Considering that at each hit the particle coordinates are unchanged 
but each component of the new velocities are random Gaussian numbers, 
~ ( x / y )  can be explicity written 

N(x  I Y) = c(a) e -~ ) /~  6(q - q,) 

q~ = q(~7, c~, t), t =  Iln-ll 
(12) 

V (v~ ,%) 

Fig. 5. Phase process. 
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where K(v) = (1/2) ~2 N V 2 and c(a) is a normalization constant. Introduc- i=1  
ing (12) in (11), we obtain 

P,,(x) ~e-K(~)/" frcly P,,- I(Y) 6(q -- q,) (13) 

where t =  t[H(y)]. 
Obviously, we can always write 

Jr dy Pn- 1(Y) (5(q - qt) = I dE fr dy p,,_ I(Y) 6(q - qt) fi(E - H(y)) (14) 

Since the only trajectories considered in the inside integral are such that 
H(y) = E, the t that appears in q, is just a single number. As the dynamics 
conserves the total energy, then 

H(y)=H(y , )  15) 

and, consequently, it follows from the Liouville's theorem that 

dy=dy,  16) 

Assuming Pn-I(Y) ~e-"('~ using (14), (15), and (16), the chain equanon 
(13) gives 

p,,(x)~e x,v,/,~ j;  dy, e-m.v,,/o 3 ( q - q t ) x  f dE 3 ( e - H ( y , ) )  

p,,(x)~e-m"~/," 
(17) 

Equation (17) implies that the Boltzmann factor (1) is a stationary solution 
of (13). 

In the following, we shall suppose that it is the only stationary 
solution. Let f (x )  be a state function defined for all x e F and let ( f ) ( t )  be 
its expectation measured at time t e [0, oo[. Assume that as t ~ oe the 
process described above approaches its statistical steady state, then 

lira ( f ) ( t )= ( f )  

where 

~M= o ~i.f(xt) dt 
( f ) =  lira (18) 

~ ~ ZT=o ILl 

822/39/1-2-12 
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x .  te  It. ,  t.+~[, is the trajectory defined by (10), which starts from the 
configuration x. ~ F resulting from the nth virtual shock. 

This implies that each integral is a function only of the initial con- 
figurations x. : 

F(x.) = I_ f(x,) dt (19) 
n 

Expression (20) becomes 

oe x Z .  = o F ( . )  
( f )  - 

Z 2 = o  II.I 

So that, assuming the ergodicity of the process, 

~r dx p(x) F(x) N 
( f )  -- ~r dx p(x) [I(x)[ = D (20) 

According to (8) and (17), we have 

II(x)l~e mxllO 

p(x)~e mx~/. 

From the definition (19) of F(x), we find 

N= frdx p(X) fz(x 1 

and rescaling the time gives 

where 

f(Ttx) dt 

N= f] & frdx p(x) LI(x)l f(x~) 

x~ : T~l+(x)lx 

Since the energy and volumes of the phase space are conserved during the 
time interval I(x), then (14)-(16) allow us to write 

N :  frdX~ p(x~) lI(x~)l f(xT). /j & 

Finally, 

( f )=~rdxp(x)lI(x) l f (x)= Srdxexp[-(1/~+l/O) H(x)]f(x) (21) 
Srdxp(x) (I(x)[ frdxexp[-(1/a+ 1/0)H(x)]  
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Expression (17) and (21) prove that the process which is generated 
introducing virtual shocks in the microcanonical dynamics displays 
correctly configurations of the phase space according to the Boltzmann fac- 
tor (1), where the inverse temperature/~ is given by expression (9). 

Notice that the procedure can be modified by disturbing at each hit 
only a limited set J =  {Jl,J2 ..... JM} of particles. This extension of the 
procedure allows us to write the transition probability (12) in the following 
way: 

~(xly)=c(cr)exp(-~-~-~ ~ V ~ ) 6 ( q - c ] t ) I - [  cS(v/-~j(t)) (22) 
j Jr 

where vj(t) = vj(O, c], t). 
Introducing (22) in (11), it is easly seen that (17) still holds, for any 

set J of M particles, 1 ~< M ~< AT. 

4. C O N C L U S I O N  

The object of this work was to exhibit an algorithm in which particles 
suffer "virtual collisions." After a relaxation time, configurations of phase 
space are visited according to the Boltzmann probability density. 

Although the thermodynamical state functions are computed as time- 
average quantities, we do not claim any contribution to the ergodic 
problem since the canonical ensemble was forced upon the system. 
Nevertheless, it is interesting to be able to introduce the canonical ensem- 
ble and, more precisely, the temperature through two external parameters 
The first one is the "temperature a" of the Gaussian velocity distribution, 
the second one being the "temperature 0" associated to the time intervals. 

These parameters are connected to the inverse temperature/~ and con- 
trol the randomness effort which is necessary to allow the escape of the 
system from trapped situations while keeping eventually the molecular 
dynamics undisturbed during time intervals which may be chosen 
arbitrarily long. 
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